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ABSTRACT

Density modulation of charged particle beams may occur as a consequence of 

deliberate action, or may occur inadvertently because of imperfections in the particle 

source or acceleration method.  In the case of intense beams, where space charge and 

external focusing govern the beam dynamics, density modulation may under some 

circumstances be converted to velocity modulation, with a corresponding conversion of 

potential energy to kinetic energy.  Whether this will occur depends on the properties of 

the beam and the initial modulation.  This paper describes the evolution of discrete and 

continuous density modulations on intense beams, and discusses three recent experiments

related to the dynamics of density-modulated electron beams. 

PACS Numbers 41.75.Fr, 52.59.Sa, 71.45.Lr, 52.35.Lv
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I. Introduction.

Any physical system in which a displacement of matter results in a restoring force 

can generally support oscillations. The exact nature of the oscillations will depend on the 

details of the restoring force, but in all cases these oscillations are characterized by 

alternating states of high potential energy gradients and high kinetic energy.

In charged particle beams of sufficiently high density or sufficiently low velocity, 

the beam diameter is set by a balance between the space charge forces generated within 

the beam and the external focusing applied to the beam.  Such beams are referred to as 

intense [1].  The space charge and external focusing forces each consist of a transverse 

component perpendicular to the direction of travel, and a longitudinal component parallel 

to the direction of travel.  The space charge force is a function of the line charge density 

in the beam, while the focusing force is determined by the properties of the beam 

transport system.  Density modulation of the beam corresponds to an alteration in the 

space charge field, and therefore to a change in the quantity and location of potential 

energy stored in the beam.

A beam may become density-modulated in several ways.  If the beam initially 

contains uniform density, an external alternating electric field may be applied to impart a 

position-dependent velocity to the particles.  This velocity modulation causes a bunching 

of the beam, and is the well-known operating principle of the klystron [2].  Note that this 

bunching of the beam corresponds to a conversion between a state where energy is stored 

in a kinetic form (velocity-modulated) and a state where energy is stored in a potential 

form (density-modulated).  This represents only one half of the oscillatory cycle -- a 
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beam which is initially modulated in density should be driven by space charge to become 

modulated in velocity.

For modern accelerators, modulation is generally not deliberately applied at the 

cathode, where space charge driven effects are most pronounced.  However, modulation 

is often applied accidentally due to peculiarities of the particle source.  This modulation 

will consist of both velocity and density modulation, but density modulation generally 

dominates.  This density modulation may have direct consequences, by altering beam 

transport and acceleration requirements, and by serving as a source of electromagnetic 

radiation after acceleration;  or it may convert to velocity modulation which may cause 

beam dispersion.

In this paper, we discuss the generation of intense density-modulated beams, their 

evolution under space charge forces, and their consequences for accelerator system 

design.

II. Generation of Density-Modulated Beams.

Two techniques have been used by the authors for generating density-modulated 

electron beams:  photomodulation [3-9] and gridded guns [8,10-12].  In photomodulation, 

an electron beam is produced (at least in part) using photoemission.  The maximum 

amount of current that can be produced from a cathode using photoemission is governed 

by the photon-counting equation,

[%]][
124

][][ QEWPmAi µλ
= , (1)

where ][Ai is the current in amperes, ][ mµλ is the wavelength of the light in microns, 

][WP is the power in watts of the light incident on the cathode, and [%]QE is the 

quantum efficiency of the cathode material at the wavelength being used, expressed in 
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percent [7].  If the cathode material being used is a prompt photoemitter, and the gun is 

operated far from the space charge limit, then the pulse shape of the electron beam 

produced will be the same as that of the laser light applied to the cathode.  Note that 

because increasing the number of photons incident on the cathode increases the number 

of electrons produced, photomodulation results in a beam which is largely density 

modulated;   some velocity modulation may also be present because the gun is not an 

ideal current source, but this will usually be a minor effect.  Although the laser pulses 

used in photoinjectors are generally assumed to have "nice" pulse shapes, in practice they 

may contain structure which is poorly-controlled and poorly-diagnosed.  This is 

particularly true in cases when the laser pulses are not transform-limited.  As a result, the 

electron beams produced often contain structure which cannot be controlled, but which 

can have an impact on beam transport, acceleration, and use.  To study this mechanism 

for density modulation of beams in a controlled fashion, the laser beam may be 

deliberately modulated using several techniques, including systems of beam splitters and 

delay lines [7], or comb filters and related interferometry techniques [3,5].  As a result of 

these techniques, the density modulation applied to the beam can be very well controlled.  

If a dispenser photocathode [13] is used, additional control over beam shape is provided 

by the capability to simultaneously generate electrons using thermionic emission and 

photoemission.  The range of pulse shapes that can be produced by these systems is 

governed by cathode temperature, type, and condition; laser power, frequency, and pulse 

shape;  and space charge limits in the gun [9]. 

A second technique for generating density-modulated beams is the use of gridded 

guns.  In these guns, a control grid is added to the basic gun diode, causing them to 
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operate like triodes (Fig. 1).  A bias voltage between the grid and cathode suppresses 

electron emission from the cathode, except during the cathode pulse. In this way, the grid 

is able to gate the output beam.

Both gridded guns and triodes may be operated in three regimes:  saturation, 

amplification, and cutoff [2,8].  In saturation, space charge limits the current produced by 

the gun, and the current is governed by the Child-Langmuir equation.  In this mode, the 

cathode-grid voltage has little effect on current.  If the magnitude of the grid voltage is 

increased sufficiently, the current drawn from the cathode will begin to be suppressed, 

and the gun will be brought into triode amplification mode.  In this mode, the current is 

governed by

2
3
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GT
VVKJ , (2)

where J is the current density produced from the cathode, TK is a constant depending 

on the geometry of the gun, GV is the voltage between the cathode and grid and AV is the 

voltage between the cathode and anode.  The quantity µ is the amplification factor, 

which is a measure of the relative ability of the grid and anode voltages to control the 

current emerging from the cathode;  µ is a function of the gun geometry [2].  In this 

mode, small changes in the cathode-grid voltage will produce large changes in the output 

current.  If the grid voltage is adjusted so that 

0≤+
µ

A
G

VV , (3)

the gun will be driven into cutoff, and no current will escape the gun.
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To deliberately produce a modulated beam, the gun is placed into triode 

amplification mode, and the cathode-grid voltage is modulated.  Several techniques may 

be used to accomplish this, including pulse-forming lines [14] and radio-frequency

modulating signals [15].  If the cathode-grid is pulsed but the gun remains in triode 

amplification mode at the top of the gating pulse, then any ringing, droop, or other 

structure on the voltage pulse will be replicated in the current produced from the gun.  

Such structure is almost always present in the output signal of pulsed power systems.  

The strengths of the velocity and density modulation produced by gridded guns 

can be calculated [8, 16].  For a nonrelativistic beam produced from a gridded gun, 

density modulation will dominate as long as the accelerating voltage applied between the 

grid and anode is much greater than the control voltage applied between the grid and 

cathode.  Therefore, in gridded guns, velocity modulation will be present, but density 

modulation will dominate.

Photomodulation and triode modulation are different, but complementary, 

techniques.  Photoinjectors generally operate below the space charge limit, which allows 

the electron pulse shape to duplicate the laser pulse shape.  Attempting to exceed the 

space charge limit will cause the onset of virtual cathode oscillations that cause the 

electron pulse shape to be very different than the laser pulse shape [17,18].  Gridded 

electron guns are generally designed to operate at the space charge limit; even if the gun 

as a whole is not operated at the space charge limit, the grid-cathode region will be, as it 

is this mechanism which allows the grid voltage to control the beam current [2].  Both 

techniques allow for precision control of electron pulse shapes.  A photoinjector with an 

idealized pulse shape can produce beam pulses which simulate those produced from a 
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gridded gun with a simple gating pulse applied to the grid.  If the idealized photoinjector 

pulse is submodulated at higher frequency, the resulting pulse shape can simulate that 

from a gridded gun operating in triode amplification mode with a structured grid pulse.  

However, photoinjectors typically have faster response times than gridded guns.  In these 

systems, the limiting factor is generally the technique used for modulating the laser pulse, 

and modulation as high as terahertz frequencies has been demonstrated [6].  Modulation 

of gridded guns is typically limited to gigahertz frequencies and below, notably by 

electron transit time effects [2].  As a result, while gridded guns may be used to simulate 

beam configurations produced from photoinjectors under certain conditions, these will 

generally be scaled experiments.

III. Evolution of Intense Density-Modulated Beams.

In the previous section, we described the generation of density-modulated beams

and how the density modulation will be accompanied by a velocity modulation which is 

generally small.  In this section, we will describe the evolution of these beams, and look 

at two experiments focusing on different aspects of this evolution.

A. Space Charge Waves.

In intense beams, the longitudinal evolution is driven by space charge forces.  The 

characteristic speed of this evolution is the "sound speed," which for electron beams is

5
0

0
0 4 γπε

λ
m

qgc = , (4)

where q is the fundamental charge, 0λ is the line charge density in the beam, 0ε is the 

permittivity of free space, m is the mass of the electron, γ is the relativistic factor, and 







+=

a
bg ln2α is a geometry factor depending on the beam diameter a and the beam 
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pipe diameter b .  The quantity α is generally taken to be zero or one, depending on the 

assumptions used [19].  This is the speed at which waves propagate in a beam [20], and 

determines the rate of longitudinal expansion of the beam [21].  Perturbations which are 

produced in beam velocity or density will generate a forward-traveling "fast wave" and a 

backward-traveling "slow wave," each traveling at 0c in the beam frame (Fig. 2).  Such 

perturbations have been investigated for use in beam diagnostics [22,23].  The behavior 

of these waves also depends on the strength of the current, density, and velocity 

perturbations and on the shape of the initial disturbance.  For initial perturbations of the 

form

)(),0( 01 thiti η= , (5)

( ) )(),0( 01 tht λδηλ −= , (6)

and

)(),0( 01 thvtv δ= , (7)

the current, line charge density, and velocity will evolve according to
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where )(th is a function varying between zero and one which describes the initial shape 

of the perturbation, and η and δ are quantities defining the strengths of the current and 

velocity modulations [20].  Note that the strength of the initial density and velocity 

perturbations determine the relative strengths of the fast and slow waves, and that if these 

parameters are set properly, the disturbance on the beam can consist of only a single fast 

wave or only a single slow wave [20].  Conversely, the relative strength of the fast and 

slow waves can be used as a diagnostic to reconstruct the relative strengths of the initial 

velocity and density perturbations which launched them.

B. Discrete Perturbations.

Recently, experiments have been performed on the Long Solenoid Experiment at 

the University of Maryland to study the evolution of discrete perturbations in intense 

beams [10,14].  In this experiment, a 5 keV electron beam is produced from a gridded, 

variable-perveance electron gun [24], and transported through a solenoid focusing 

channel to a high-resolution energy analyzer [25-27] 2.3 m downstream from the gun.  

Emission from the electron gun is suppressed by applying a constant bias voltage 

between the grid and cathode, except during a nominal 100 ns long pulse produced by a 

pulse-forming line.  To produce a density (dominated) perturbation in the beam, the 

pulse-forming line is modified by the addition of a "T" connector and stub line.  A typical 

pulse shape is shown in Fig. 3.  To adjust the pulse shape, the bias voltage applied 

between the grid and cathode is adjusted.  As the gun is operating in triode-amplification 
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mode, this results in a change in both the main beam current, and the perturbation current.  

When the beam reaches the energy analyzer, the beam energy as a function of position is 

measured;  for small initial perturbations, results are found to agree well with the one-

dimensional theory of eqns. (5) - (10), and with predictions from the WARP-RZ particle-

in-cell code (Fig. 4).  For comparison to theory, the initial velocity perturbation strength 

δ was set to zero, while the initial current perturbation strength η and the perturbation 

shape function )(th were directly captured from the current profiles in Fig 3.  For 

stronger perturbations, the theoretical assumption of small disturbances no longer holds, 

and higher-order terms would need to be included in the theory. (Photomodulation 

techniques have also been used to generate single perturbations;  these experiments are 

discussed in more detail elsewhere [7-9, 11,12,28].)

For theoretical purposes, let us now consider an idealized version of this 

experiment.  The assumption of pure density modulation from a triode-type gun is not 

exact, but it is very close.  Under this assumption, 0=δ and the equations for the 

perturbed density, current, and velocity become
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This indicates that an initial density modulation of )0()0( 01 === tht ηλλ will spawn a 

fast and slow density wave, each of peak magnitude η
λ
2

0 , and a fast velocity wave of 

magnitude η
2
0c and a slow velocity wave of magnitude η

2
0c

− .  This model's prediction 

of fast and slow velocity waves which retain the shape of the initial density perturbation, 

but have opposite polarities, agrees well with experimental observations from the Long 

Solenoid Experiment [14].  We now consider the potential and kinetic energy stored in 

the perturbation and waves.  The potential energy associated with a charge distribution is 

the energy stored in the resulting electric field:

∫= dVEU 20

2
ε . (14)

In the long wavelength limit and far from the beam ends, the electric field due to an 

intense beam consists of both a longitudinal component and a transverse component.  The 

longitudinal component is given by [19]

z
gEz ∂

∂−
=

λ
γπε 2

04
. (15)

The transverse component is found (approximately, for the long-wavelength regime) 

from Gauss' Law, and is

r
E

02πε
λ

=⊥ (16)

between the beam and the beam pipe, and

02ε
ρrE =⊥ (17)
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inside the beam.  Here g is the geometry factor previously discussed, λ is the local line 

charge density in the beam, r is the radial position, and ρ is the beam volume charge 

density. For an intense beam, the volume charge density in each slice of the beam is 

generally taken to be a constant, with changes in the line charge density being due to 

changes in the beam radius [29]

πρ
λ

=a . (18)

When this assumption is used in the derivation of the longitudinal electric field, 0=α

and the electric field is found to be uniform across the beam cross-section. Combining 

eqns. (14)-(18), and integrating over the proper limits, the potential energy stored in the 

electric field of the beam, over a region of the beam between 1z and 2z , is found to be
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Here, it is assumed that the line charge density )(zλ is the sum of an unperturbed value 

0λ and a perturbed value )(1 zλ .  Note that the first term in eq. (19) represents the energy 

stored in the longitudinal electric field of the beam, the second term represents the energy 

stored in the transverse field of the beam within the beam itself, and the third term 

represents the energy stored in the transverse field of the beam between the beam radius 

and the beam pipe.  To find a simpler expression, we note that for small perturbations, 

1<<η , and discard all terms carrying factors of 2η or 3η .  In addition, we discard )(1 zλ
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in the logarithmic term in eq. (19), as this will tend to have a very small effect on the 

overall stored energy.  When this is done, the energy stored in the beam becomes
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However, for this paper, we are concerned with changes in stored energy, and so only 

terms depending on perturbed quantities are of interest.  In this case, the "perturbed" 

stored energy becomes
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Note that the longitudinal electric field does not contribute at all to this quantity, as it 

consisted of higher powers of η and was discarded.  Therefore, regions of increased 

current in intense beams increase the beam radius and store additional energy in the 

transverse electric field of the beam.  Also, note that the bracketed term in eq. (21) 

depends on the ratio 
00

lnln
a
bb

=
λ
πρ

, and looks like a modified, average geometry factor

corresponding to the unperturbed beam radius 0a ;  for simplicity, we write this term as 

g′ in the equations that follow.

For a single perturbation, the additional potential energy stored in the initial 

perturbation is

∫
′

=
onperturbati

i dzthgU )(
2 0

2
0

πε
λη . (22)

After some time, the fast and slow density waves have separated, and the final potential 

energy stored in the system can be calculated.  In the case of a single, discrete initial 
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perturbation, the line charge density )(1 zλ will consist of two discrete perturbations, each 

preserving the width, shape, and half the height of the original density perturbation.  

Therefore, the final stored potential energy is
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Fast Slow
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2
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which is identical to the potential energy stored in the initial perturbation, given by eq. 

(22).

If the potential energy stored in the perturbed beam does not change, what about 

the kinetic energy in the beam?  The nonrelativistic kinetic energy for a distribution of 

particles is1

dmvT ∫= 2

2
1 , (24)

or

dzzv
q

mT )(
2

2λ∫= . (25)

For our beam, both the velocity and density consist of perturbed and unperturbed 

quantities, so

[ ] [ ]∫ ++= dzzzvv
q

mT )()(
2 10

2
10 λλ . (26)

  
1 This is the kinetic energy associated with the longitudinal motion of the particles only.  Kinetic energy 
associated with transverse motion of the particles in the beam will be related to the square of the change in 

beam radius, ( )2dzda , which for an intense beam is related to the beam line charge density by 

( ) 2

1

1

10 )(2 



 +

−
dzdz λλλ , which is essentially a higher order term carrying a factor of 2η .  We may 

therefore disregard this contribution while being consistent with the other approximations in this paper.
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The perturbed quantities each carry a factor of η ;  preserving only the terms of order 0η

or 1η , this becomes 

[ ]∫ ++= dzzvvzvv
q

mT 0101
2

00
2

0 )(2)(
2

λλλ . (27)

The first term is the kinetic energy carried by the unperturbed beam, and therefore is not 

associated with any evolution of the perturbations.  

The second term is the added contribution to the beam's kinetic energy due to the 

added mass placed in the beam by the initial density modulation.  This term can be 

rewritten as
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For small initial perturbations, described by the first-order theory of Reiser, the shape of 

the fast and slow waves does not change over time, and is identical to the shape of the 

initial density perturbation.  Thus, the integrals in eq. (28) always sum to a constant, and 

λ∆T does not change.

The third term in eq. (27) is the contribution of the perturbed velocity to the 

kinetic energy stored in the beam.  This term may be rewritten as
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Because the shapes of the fast and slow waves do not change over time, the integrals in 

eq. (29) always sum to zero.  As a result, there is no net contribution of the velocity 

disturbance to the kinetic energy stored in the beam.  Therefore, in the case of discrete 

initial density perturbations, the excess potential and kinetic energy stored in the beam do 
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not change over time, and there is no oscillation between density modulation and velocity 

modulation once the fast and slow waves have separated.  Rather, the effect of waves 

launched from a discrete perturbation is to alter the location in the beam where excess

energy is stored, rather than the form in which it is stored.

C. Periodic Modulation.

Density modulation can also be imposed on an intense beam in the form of a 

continuous, periodic modulation.  Because any periodic modulation can be expressed as a 

combination of sines and cosines through the Fourier series, we will emphasize 

modulations of these types.

Experiments on continuous density modulation of intense beams at the University 

of Maryland have been performed on the University of Maryland Electron Ring (UMER).  

UMER is a 10 keV, 100 mA strong-focusing electron beam transport system for the study 

of intense beam dynamics [1,30].  The beam in UMER is produced from a gridded 

electron gun with Pierce focusing [31,32].  Like the gun for the Long Solenoid 

Experiment, emission from the UMER cathode is suppressed by applying a bias potential 

between the grid and cathode.  To produce beam, a pulse-forming line is used to apply a 

pulse to the cathode, with the result that the potential between the grid and cathode is 

changed, allowing electrons to escape through the grid and be accelerated by the 10 kV 

accelerating potential (Fig. 1). Under normal conditions, the bias voltage is set to 

approximately 40 V, which ensures that the gun is driven into saturation during the 

cathode pulse but is kept in triode cutoff otherwise.  However, by increasing the bias 

voltage to approximately 60 V, the gun will not be able to reach saturation, and instead 

will remain in triode amplification mode throughout the cathode pulse [8].  When this 
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happens, the beam current pulse shape is no longer rectangular, but instead shows a 

pronounced sinusoidal modulation at the beam head, followed by an exponential decay in 

the remainder of the pulse.  These current profiles are shown in Fig. 5, as measured on a 

beam position monitor (BPM) [33] 7.7 m downstream from the cathode.  This 

modulation is believed to be due to triode amplification of structure present on the signal 

provided by the pulse-forming line.  By adjusting the bias voltage to bring the gun into 

triode cutoff, the amplification factor of the UMER gun was measured to be 910.  This 

value is large compared to the amplification factors typical for triode tubes, which 

generally range from about 2.5 to about 200 [2].  The size of the UMER amplification 

factor is due to its very large grid-anode spacing, which is between 170 and 270 times 

greater than the spacing between grid wires [8].  Even so, the measured amplification 

factor is less than the theoretical value of 1493 calculated from formulas given in 

reference [2].  Using the measured value of the amplification factor, an approximate 

pulse-forming line signal can be deduced (Fig. 6) by calculating the beam current from 

eq. (2) and comparing the calculated trace to the observed traces for various values of the 

bias voltage (Fig. 7).  The inferred pulse-forming line signal shows a small amount of 

ringing at the leading edge of the pulse, and droop across the remainder of the pulse, as 

well as an apparent reflection at the falling edge of the pulse.  All of these are features 

typically seen in pulsed power systems, and are unremarkable unless amplified, as can 

occur in the UMER gun. Unfortunately, the pulser was damaged before direct 

measurements were made for comparison to Fig. 6.  The replacement pulser produced 

noticeably different beam modulation, suggesting a change in the voltage pulse shape 

applied across the cathode-grid gap. Recent direct measurements of this voltage with the 
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new pulser show a waveform which is significantly different from that of Fig. 6, as 

expected [34].  However, the measurements indicate that the new pulser also exhibits 

ringing, reflection, and (in the reflection) droop.

As described in section II, modulation of this type in gridded guns consists almost 

entirely of density modulation;  in the case of the UMER gun, the strength of the current  

modulation is approximately 41.0=η , compared to a velocity modulation strength of 

approximately 00015.0=δ [8].

The traces shown in Fig. 5 and the experimental traces shown in Fig. 7 were all 

measured at a single location on UMER;  on closer inspection, the beam modulation was 

found to be a function of distance traveled along the beam line.  The strength of the 

modulation was found to decrease over the first 3.2 m of the beam line, then to increase 

over the next 3.2 m, and finally to decrease again over the remaining 3 m.  To quantify 

this variation, the maximum peak-to-peak modulation signal strength was measured for 

each data trace, and divided by the peak signal strength in the waveform.  Finally, the 

four values measured from each plate of each BPM were averaged to give an "average 

normalized modulation depth" (ANMD) at each BPM location.  The ANMD was plotted 

as a function of distance from the cathode, as shown in Fig. 8 for one set of operating 

conditions.  By analogy with the evolution of discrete density perturbations, it was 

hypothesized that the initial modulation had formed a forward-traveling fast wave and a 

backward-traveling slow wave, each of which retained the shape of the initial 

modulation.  The modulation is assumed to be of the form 

( ) ( )kztkztztA ++−= ωω coscos),( . (30)
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In this equation, 
βc
st = is the time it took the beam to travel a distance s along the 

beamline, and z is the position in the beam along which the fast and slow waves are 

traveling.  For a modulation with frequency f observed in the lab, the wavenumber k  

has the value 
β
π

c
f2 .  The phase velocity of the fast and slow waves is then

f
c

k
vp π

βωω
2

±=±= . (31)

The frequency of modulation f was measured to be approximately 115 MHz.  The 

angular frequency ω could be determined by the location of the null in the curves of Fig. 

8;  for the operating condition shown, this value was 171064.2 −× s .  As a result, the 

phase velocity of the hypothesized fast and slow waves was determined to be 

s
m61019.2 ×± for the operating condition shown.  For comparison to theory, the sound 

speed was calculated from Eq. (4) and found to be s
m61065.1 ×± when α is taken to 

be zero.  However, Eq. (4) assumes a small-amplitude space charge wave propagating 

through a uniform background charge density 0λ , and neither of these conditions holds in 

this experiment.  The beam current used to calculate the “theoretical” value was taken 

from beam current traces measured at the Bergoz current monitor 63 cm from the 

cathode, but because of the presence of the beam modulation and the unusual shape of the 

underlying beam, the average value of the unmodulated beam current in the location of 

the modulation could only be estimated.  In addition, the strength of the beam modulation 

in general was not small compared to the background beam current.  In this case, it is 

reasonable that Eq. (4) might underestimate the sound speed.
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Following the precedent of the previous section, we will now consider a 

simplified version of this scenario from a theoretical perspective.  We assume a 

continuous cosine modulation of an infinitely-long intense beam on which no other 

structure is present.  We begin by noting that the BPMs and the Bergoz fast current 

transformers [35] used to observe the beam modulation in UMER detect beam current, 

rather than the beam velocity or charge density. However, we can see from eqs. (11) and 

(12) that for a beam with no initial velocity modulation, the current and density in an 

intense beam are directly proportional.  As before, we note that the initial potential 

energy stored in the density-modulated beam is

∫
′

=
2

1

)(
2 0

2
0

z

z
i dzzhgU

πε
λη

. (32)

Let's assume the initial density perturbation to be a continuous cosine modulation of the 

form

[ ] [ ]kzzh cos= . (33)

This initial modulation may be thought of as the superposition of the fast and slow waves, 

which have not yet separated (Fig. 9).  The fast and slow density waves are of the same 

sign, and therefore add constructively.  The initial stored potential energy associated with 

this modulation is

2

1
sin

2 0

2
0 z

zi kz
k

g
U

πε
λη ′

= . (34)

If this is integrated over all of our infinitely-long beam, we find that there is no extra 

potential energy stored in the beam due to the modulation.  In this way, the continuously-

modulated case is different from the discretely-modulated case.  However, while there is 

no net additional stored potential energy in the beam, the modulation creates regions of 
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high and low potential energy;  wherever 0λλ > ,  the local potential energy density 

exceeds the average value in the beam, and wherever 0λλ < , the local potential energy 

density is less than the average value in the beam.  Thus the beam is modulated in 

density, which causes it to be modulated in potential energy.  In contrast, the fast and 

slow velocity waves are of opposite sign, so that their contributions cancel and the beam 

everywhere returns to its average value of velocity, and therefore of kinetic energy (Fig. 

9).  

The fast and slow waves produced by the initial density modulation will travel 

past each other, and the beam will reach a condition where the density waves are now out 

of phase (Fig. 10).  As a result, the fast and slow density waves will add to zero, and the 

perturbed potential energy calculated from eq. (21) will be zero everywhere.  However, 

the signs of the fast and slow velocity waves are opposite, and so they will now sum 

constructively;  the beam has become velocity modulated.  This will occur after the 

(coasting) beam has traveled a distance of

0

0

4c
Lvs = , (35)

where L is the wavelength of the initial density modulation.  Note that the peak of the

velocity modulation occurs halfway between the old locations of the peak and trough in 

the density modulation.  If the beam is assumed to be axially-symmetric, the full 

conversion of potential energy to kinetic energy can easily be shown for particles whose 

positions and velocities are constrained to lie along the axis.  The difference in potential 

energy between the peak and trough of the original density modulation was,
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02
02

ηλ
γπε

gqdzqEU
peak

trough
z∫ ==∆ (36)

where zE is the longitudinal electric field of eq. (15) and 02ηλ is the difference in 

density between peak and trough.  The peak kinetic energy in the velocity modulation, 

calculated from eq. (13) for the case of constructive interference between the fast and 

slow velocity waves, is

[ ] 05
0

2
0 2

2
2
1 ηλ

γπε
η gqcmT == (37)

Equations (36) and (37) are equal in the nonrelativistic limit, showing that there is full 

conversion of potential energy into kinetic energy.

Allowing the beam to propagate to  
0

0

2c
Lvs = will allow the density modulation to 

reform and the velocity modulation to disappear (Fig. 11).

D. Observations on Energy Conversion.

So far, we have looked at two examples of density modulation in intense beams, 

and the wave propagation and energy transfer which results.  In the case of a single, 

unipolar density perturbation, fast and slow velocity and density waves are launched.  

These waves retain the shape of the initial perturbation and continue propagating forever 

if they do not encounter the beam ends [36] or other effects such as resistive channels 

[37,38].  The perturbation (and resulting waves) store extra net energy in the beam, 

compared to an unperturbed beam.  This extra net energy is stored in the form of 

potential energy due to the accumulation of additional charge in the perturbation (or 

waves), and in the form of kinetic energy due to the accumulation of additional mass in 

the perturbation (or waves).  Most importantly there is no oscillation between density and 
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velocity modulation, and stored energy is not converted between potential and kinetic 

forms once the fast and slow waves have separated.

In the case of a continuous modulation, fast and slow waves are also launched, 

which retain the shape of the initial modulation.  However, the initial modulation (and 

resulting waves) do not store extra net energy in the beam, compared to an unmodulated 

beam.  However, the initial modulation contains alternating, adjacent regions storing 

higher and lower potential energy than the beam's average value.  This local potential 

energy imbalance can be seen as driving an oscillation between the density-modulated 

state (in which energy is stored as potential energy) and the velocity-modulated state (in 

which energy is stored as kinetic energy).  These results are summarized in Table I.  The 

discrete-perturbation case and the continuous-modulation case represent opposite 

extremes;  other cases may fall between these extremes and exhibit a mix of their 

characteristics.  Note that to produce any oscillation and conversion between potential 

and kinetic energy in density-modulated beams, the initial modulating signal must be 

bipolar, with regions where 01 λλ > and other regions where 01 λλ < .  For full conversion 

between density modulation and velocity modulation, the modulating signal must be 

symmetrical about the 01 =λ axis.  Also note that the analysis used here for sinusoidally-

modulated beams can be applied to any periodic modulation through the use of the 

Fourier series.

IV.  Consequences and Applications.

The dynamics discussed above can have a wide range of consequences and 

applications for accelerator systems.  For example, space-charge waves are widely 

thought to have potential as a beam diagnostic to measure quantities that appear in the 
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sound speed [22,23,39].  The presence of two counter-propagating waves of similar shape 

will lead to interference effects [8], which may enhance the precision of such techniques.  

In addition, space charge waves may be inadvertently launched in systems designed for 

heavy ion fusion [40].  Beam modulation has always played a role in the production of 

electromagnetic radiation.  Generally, this involved both modulation and radiation 

entirely at nonrelativistic energies, as in traditional klystrons [2], or entirely at highly 

relativistic energies, as in the free-electron laser [41].  Acceleration to high γ is often 

desired specifically to avoid space-charge issues of the type discussed in this paper, since 

the sound speed decreases and because beams become less intense (transversely) as γ is 

increased.  However, there has been some interest in systems which modulate the beam at 

the cathode, accelerate the modulated beam, and then have it interact with changing 

boundary conditions or fields to generate radiation [3-6, 42-44].  In principle, this 

technique could allow more compact light sources, or light sources which operate in 

regions of the spectrum (like the terahertz region) where sources are weak or nonexistent.  

However, systems which produce intense, density-modulated beams at the cathode will 

exhibit some of the effects described in this paper.  Specifically, the density modulation 

will launch fast and slow waves.  For producing radiation, continuous or quasi-

continuous operation is desired to give finer control over the wavelength of the output 

radiation.  But continuous density modulation will undergo the oscillation between 

density modulation and velocity modulation described above.  This oscillation will occur 

faster at high current levels and at small beam velocities.  If the beam were allowed to 

evolve without acceleration, the density modulation -- which is necessary for the 

radiative mechanism -- would completely disappear.  To prevent this, a premodulated 
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light source immediately accelerates the density-modulated beam as soon as it leaves the 

cathode.  If this is done quickly enough, the sound speed in the beam will quickly 

decrease towards zero.  All beams of interest begin their lives as intense beams, but the 

acceleration described here will quickly cause the beam to no longer be intense, but 

rather (transversely) emittance dominated [1].  As emittance becomes more important, 

the analysis presented in this paper no longer applies.

An experiment along these lines was recently performed at Brookhaven National 

Laboratory using their Source Development Laboratory’s Deep Ultra-Violet Free 

Electron Laser (DUV-FEL) facility [3-6, 45].  When the machine is used as an FEL, a 

drive laser produces a 5-10 ps pulse of electrons at a copper cathode through 

photoemission.  The electrons are then accelerated to approximately 250 MeV, at which 

point they enter a wiggler to produce coherent light.  

The purpose of exploring electron beam density modulation drove a slightly 

different configuration of the accelerator system.  In this case, the drive laser pulse was 

coded with terahertz modulations in order to serve as a switch at the photocathode.  A 

scanning cross correlator was used to measure the time profile of the laser pulse [46].  

Measurements show several sub-picosecond pulses separated by spaces of similar length 

(Fig. 12). Since photoemission from copper is prompt (sub-femtosecond) [47], electrons 

will be emitted with a temporal profile which closely resembles that of the incident laser 

pulse.  Initially, the electron beam is strongly dominated by space charge forces, which 

are mitigated as energy increases.  

After the electron beam is accelerated, the longitudinal phase space can be 

measured by tomographic reconstruction [48].  This reconstruction is formed by taking 
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several one-dimensional projections of the two-dimensional longitudinal phase space.  

The projections are formed by placing an energy chirp on the beam and using a

spectrometer (magnetic dipole) to measure the projection of the chirp-modified phase 

space on the energy axis.  The chirp is varied by changing either the amplitude or the 

phase.  

Any density modulation present on an electron beam will affect the nature of 

radiation it might emit.  If some mechanism causes a single electron to emit a specific 

wavelength of light, a bunch train of electrons separated by that wavelength would emit 

in such a way that their electric fields would add in phase.  The result would be enhanced 

emission at that wavelength, with the resultant electric field proportional to the square of 

the number of electrons in the beam.  If on the other hand, all of the electrons were 

randomly distributed throughout the beam, the electric fields would add incoherently, and 

the resultant electric field would be directly proportional to the number of electrons in the 

beam.  The coherent emission could serve as a source of light, as well as an electron 

beam diagnostic.  This mechanism is employed in many of the devices listed previously.    

At the DUV-FEL, a mirror can be inserted into the beam pipe such that it 

intercepts the electron beam at an angle.  At the boundary between the mirror and the 

vacuum, the beam produces transition radiation which is reflected out of the accelerator 

system.  This light is transported to a single element bolometer that was equipped with 

several band-pass filters.  Recording the amount of energy measured with each filter in 

place gives an idea of how much energy falls into each band from the modulated electron 

beam.  
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After acceleration, the initial density modulation coded on the electron beam does 

not appear intact.  In fact, the beam exhibits some conversion between density 

modulation and kinetic energy modulation. Examining the reconstructed longitudinal 

phase space reveals that a projection onto the position coordinate results in a partially 

washed out density profile compared to the initial laser pulse (Fig. 13). However, each of 

the bunches are separated by voids in phase space (Fig. 14). As the bunch charge 

increases, the density modulation washes out further, and the angle of rotation in phase 

space is increased.   A good example of this is shown in Fig. 15, where the longitudinal 

phase space diagrams correspond to bunch charges of 20 pC and 160 pC respectively.  

This is an indication that the transfer between density and energy modulation is a result 

of space charge.   

Therefore, as the charge increases, the amount of terahertz light produced is a 

function of both the total bunch charge and the density modulation of the electron beam.  

Increasing the amount of charge at very low total charge levels causes an increase in 

terahertz light with the square of the charge.  The reason for this is that space charge

forces are not strong enough to cause density washout.  As the charge increases further, 

density washout begins to occur.  The point at which this occurs is dependent on the 

derivative of the line charge density across the profile.  The result is that as charge 

increases, the amount of terahertz light produced within a specific band can actually 

decrease.  Eventually, the density washout will be nearly complete, and the total light 

produced will again increase, except only linearly with charge.  This departure from the 

quadratic increase is demonstrated in Fig. 16.
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The spectra of the radiated light can be calculated from the longitudinal phase 

space for each case.  In order to do this, the light emitted at the mirror is calculated along 

with the effect of the light transport system.  For comparison, the effect of the passband 

filters can be applied to the spectra, and compared to the values measured at the 

bolometer.  An example of a calculated spectrum is shown in Fig. 17.  Bolometer 

measurements, expressed in terms of an enhancement factor relative to an unmodulated 

beam, are shown in Fig. 18.

Note that the conversion between density modulation and velocity modulation 

may also have detrimental effects when the modulation is unwanted.  Unwanted density 

modulation may occur in photoinjector systems where the applied drive laser contains 

unintended structure.  If this density modulation remains on the beam, it may be a source 

of coherent radiation when interacting with fields or boundary conditions.  However, if it 

is allowed to convert into velocity modulation, it may resurface later in the beamline due 

to dispersion.  These matters are of importance for designers of photoinjector systems.

V. Conclusions.

In this paper, we have discussed the generation, evolution, and consequences of 

density modulation of intense, nonrelativistic beams.  Density modulation may be 

produced in a number of ways, including by photomodulation or through the use of 

gridded electron guns.  Depending on the structure of the modulation, the density 

modulation may convert in part or in whole to velocity modulation.  This represents a 

conversion of the energy stored in the beam modulation from potential energy to kinetic 

energy.  The resulting space charge waves have potential for use as diagnostics.  
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Although the dynamics described here assume intense, nonrelativistic beams, they may 

still have consequences for more conventional high-energy beams.
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Fig. 1. Schematic of a gridded electron gun, showing cathode (K), grid (G), anode (A), 

Pierce electrodes, grid bias voltage source (BV), cathode pulser source, and 10 kV 

accelerating potential [8].
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Fig. 2. (Color online.) Beam current measured near the cathode and downstream during a 

photomodulation experiment with an intense electron beam in the University of Maryland 

Electron Ring.  Initial perturbation (P) launches a forward-traveling "fast wave" (F) and a 

backward-traveling "slow wave" (S) [12].
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Fig. 3.  Example of beam current modulation produced in a gridded electron gun [23].
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Fig. 4. (Color online.) Average electron kinetic energy, as a function of position in beam, 

resulting from the perturbation shown in Fig. 3.  Comparison of experiment, theory, and 

simulation shows good agreement in the region of the fast (F) and slow (S) waves [20].
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Fig. 5.  UMER beam profile as a function of bias voltage, measured 7.7 m downstream 

from the cathode [8]. Horizontal scale is 50 ns/division.
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Fig. 6  Approximate UMER pulse-forming line signal [8].  This function was inferred 

using Eq. (2), which calculates output current waveforms very close to those measured 

experimentally when this function is used as the grid voltage. 
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Fig. 7 Experimental beam pulse shapes measured in UMER for various values of bias 

voltage (left), compared to theoretical beam pulse shapes calculated from the inferred 

pulse-forming line pulse shape of Fig. 6 (right).  Traces shown for space charge limited 

operation (a), transitional operation (b), triode amplification mode (c), and just before 

cutoff (d).  Experimental traces show that the beam has undergone longitudinal 

expansion, increasing the rise and fall times of the pulse.  Longitudinal expansion was not 

included in the theoretical calculations [8].
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Fig. 8.  Evolution of beam modulation as a function of distance traveled.  "Average 

Normalized Modulation Depth" (ANMD) is a measure of modulation strength relative to 

peak beam current.  Dashed line is a fit to experimental data;  null point in the fit was 

used to determine sound speed in the UMER beam [8].
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Fig. 9.  Initial configuration of beam at 0=s : density-modulated.  Fast density wave 

(FD) and slow density wave (SD) add constructively, while fast velocity wave (FV) and 

slow velocity wave (SV) add destructively.
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Fig. 10.  Intermediate configuration of beam at 
0

0

4c
Lvs = :  velocity-modulated.  Fast 

density wave (FD) and slow density wave (SD) add destructively, while fast velocity 

wave (FV) and slow velocity wave (SV) add constructively.
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Fig. 11.  Final configuration of beam at 
0

0

2c
Lvs = : density-modulated.  Fast density wave 

(FD) and slow density wave (SD) add constructively, while fast velocity wave (FV) and 

slow velocity wave (SV) add destructively. 
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Fig. 12.  Cross-correlator measurement example of modulated drive laser pulse
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Fig.13. Projection of longitudinal phase space onto time coordinate.  Note washout 
compared to laser pulse in Fig AA.
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Fig. 14.  (Color online.) Reconstructed longitudinal phase space.  Inset shows orientation 
of main microbunches.
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Fig. 15.  (Color online.) Reconstructed longitudinal phase space for beams with total 
bunch charge of 20 pC (top) and 160 pC (bottom).  Insets show orientation of main 

microbunches. 
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Fig. 16. Total (unfiltered) terahertz energy generated by a modulated electron beam based 

on calculations from PARMELA simulations (diamond), calculations from tomographic 

reconstructions (cross), and actual bolometer measurements (circle). The dashed line is a 

reference defined by a quadratic dependence on charge, which is expected when space 

charge forces are negligible [6]. 
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Fig. 17.  Reconstructed terahertz spectrum [6].
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Fig. 18. Enhancement factor for different passband filters centered at (1) 0.703 THz, (2) 
0.9678 THz and (4) 1.56 THz, for measured (solid), simulated (dash), and calculated 

(dot) results. Vertical lines represent error bars on experimental measurements.
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"Discrete Modulation" "Continuous Modulation"

Shape Unipolar Bipolar

Extra Mass & Charge? Yes No

Additional Net Energy 

Stored?

Yes No

Potential ↔ Kinetic 

Conversion?

No Yes

Density ↔ Velocity 

Modulation Conversion?

No Yes

Table I.  Properties of the two types of modulation discussed in this paper.


